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Abstract
The use of master actions to prove duality at quantum level becomes
cumbersome if one of the dual fields interacts nonlinearly with other fields. This
is the case of the theory considered here consisting of U(1) scalar fields coupled
to a self-dual field through a linear and a quadratic term in the self-dual field.
Integrating perturbatively over the scalar fields and deriving effective actions
for the self-dual and the gauge field we are able to consistently neglect awkward
extra terms generated via master action and establish quantum duality up to
cubic terms in the coupling constant. The duality holds for the partition function
and some correlation functions. The absence of ghosts imposes restrictions on
the coupling with the scalar fields.

PACS numbers: 11.15.−q, 11.10.Kk, 11.10.Gh, 11.10.Ef

1. Introduction

The use of dual descriptions of the same physical theory is an important tool in physics as
in the AdS/CFT correspondence [1]. Deep non-perturbative effects like confinement can
be revealed [2] by means of duality. The usual weak coupling expansion of one theory can
describe the strong coupling regime of the dual theory and vice versa as in the case of the
massive Thirring and the Sine-Gordon models in (1+1) dimensions [3, 4]. In this specific
case a theory with at most quartic interaction is related to a highly nonlinear theory with all
powers of interacting terms. This is in fact similar to the case discussed in the present work
which has its roots in the duality between the second-order Maxwell–Chern–Simons (MCS)
gauge theory and the first-order self-dual (SD) model [5]. Although the equivalence between
these two free theories, proved in [6] through a master action approach, is interesting in
itself the most powerful applications of duality are found in interacting theories. It is therefore
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natural to extend the MCS/SD duality to include matter interactions [7–9], non-Abelian gauge
symmetries [6, 10–13], as well as, non-commutativity [14]. In particular, we are interested
here in the coupling of the self-dual field with U(1) charged matter and its dual gauge theory.
The authors of [7] have shown that the gauge theory dual to U(1) fermions minimally coupled
to the self-dual field must contain a Thirring current–current term and the minimal coupling
has to be replaced by a Pauli-like coupling in the dual gauge theory. The proof, based on
a master action, holds for the equations of motion and the partition function. In [8] the
case of both charged fermions and scalar fields minimally coupled to the self-dual field were
considered only at the classical level. In the case of scalar fields, which is considered here, we
have an extra complication. Namely, the dual gauge theory contains besides a Thirring term a
highly nonlinear interaction between the gauge and the matter fields through the coefficient of
the Maxwell term which contains scalar fields in its denominator. The source of complicated
nonlinear terms is the dependence of the U(1) current on the self-dual field which is absent for
fermions. In [9] we have argued that due to the lack of gauge symmetry in the self-dual model
there is no need for a minimal coupling with the matter fields. Thus, we can suppress the
field-dependent part of the U(1) current and work with a linear coupling in the self-dual field
similarly to the case of fermions where the minimal and linear couplings are the same. In this
case we have been able [9] to derive the dual equivalent gauge theory through a master action
and prove the dual equivalence at quantum level. That corresponds in our notation to the case
a = 0, see (1) and (3), where the highly nonlinear terms present in the dual gauge theory (6)
disappear. The aim of this work is to return to the general case a �= 0 and prove the dual
equivalence between U(1) scalar fields nonlinearly coupled to the self-dual field and its dual
gauge theory at quantum level. By calculating the functional determinant from the integral
over the scalar fields until quadratic terms in the coupling we will prove the dual equivalence
at, to that order, of the partition functions and some correlators thus going beyond the proof
of classical equivalence for arbitrary values of a given in [8, 9] and quantum equivalence
for a = 0 presented in [9]. Our result is a nontrivial check of the field dependence of the
coefficient of the Maxwell term appearing in the dual gauge theory.

In section 2.1, starting from a master action we recall the classical equivalence of the
self-dual model nonlinearly coupled to U(1) scalar fields with its dual gauge theory. In
section 2.2 by integrating over the matter fields perturbatively, we prove the dual equivalence
of the corresponding partition functions disregarding cubic and higher terms in the coupling
constant. In section 2.3 we include sources and extend the proof to correlation functions. In
section 3 we analyse the spectrum of the effective action for the self-dual field regarding the
presence of ghosts. In the final section we present the conclusions.

2. Dual equivalence

2.1. Equations of motion

Our starting point is the master Lagrangian suggested in [8, 9]:

LMaster = µ2

2
f µfµ − m

2
εαβγ f α∂βf γ − ef νJ (0)

ν + LMatter +
m

2
εαβγ (f α − Aα)∂β(f γ − Aγ ),

(1)

where
J (0)

ν = i(φ∗∂νφ − φ∂νφ
∗) (2)

µ2 = m2 + 2ae2φ∗φ (3)

LMatter = −φ∗(� + m2
φ

)
φ. (4)
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We assume gµν = (+,−,−). The quantity a is a constant and the case of minimal coupling
corresponds to a = −1. Since the gauge invariance of the master Lagrangian is guaranteed
for any value of a we do not need to stick to the minimal coupling. We have shown in [9]
that from the equations of motion δLMaster = 0 we can derive two sets of equations of motion
δLM+SD = 0 and δLM+MCS = 0 where

LM+SD = µ2

2
f µfµ − m

2
εαβγ f α∂βf γ − ef νJ (0)

ν + LMatter (5)

LM+MCS = − m2

4µ2
Fαβ(A)Fαβ(A) +

m

2
εαβγ Aα∂βAγ

− me

µ2
J (0)

ν εναβ∂αAβ − e2

2µ2
J (0)

ν J ν(0) + Lmatter. (6)

Furthermore, the equations of motion of LM+SD and LM+MCS are equivalent to each other
through the dual map fν ↔ Ãν where

Ãµ ≡ − m

µ2
εµνα∂αAν +

e

µ2
J (0)

µ . (7)

The classical equivalence holds for arbitrary values of a. Concerning the role of the minimal
coupling (a = −1) a comment is in order. Namely, the equations of motion of LM+SD lead to
∂ν{[m2 + 2(a + 1)e2φ∗φ]f ν} = 0 which works like a gauge condition assuring that the gauge
field Aµ and the self-dual field fµ have the same number of degrees of freedom for arbitrary
values of a. Though it is not mandatory to fix a = −1, in that case we deduce the simple
equation ∂νf

ν = 0 which appears in the free self-dual model.

2.2. Effective actions

In order to check duality at quantum level we start with the partition function:

Z =
∫

DφDφ∗Df νDAν exp

(
ı

∫
d3x Lmaster

)
. (8)

The gauge field Aν , after a translation Aν → Aν + fν , can be easily integrated leading to

Z = C

∫
DφDφ∗Df ν exp

(
ı

∫
d3x LM+SD

)
, (9)

where C is a constant. On the other hand, starting from (8) and performing the translation
fν → fν +

(
eJ (0)

ν − mεναβ∂βAα
)/

µ2 we arrive at the dual theory LM+MCS plus an extra term,

Z =
∫

DφDφ∗Df νDAν exp

(
ı

∫
d3x[LM+MCS + Lextra]

)
, (10)

where

Lextra = (m2 + 2ae2φ∗φ)
f νfν

2
. (11)

At classical level, Lextra can be dropped since its equations of motion imply fν = 0. At
quantum level, the functional integral over fν will be matter field dependent for a �= 0 and
there seems to be no simple way to disregard those potentially divergent contributions. In order
to avoid such problems we have assumed in [9] the linear coupling condition a = 0 which
allowed us to rigorously prove the dual equivalence between LM+MCS and LM+SD at quantum
level including matter and vector field correlation functions. If a = 0 we have µ2 = m2 and
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the complicated nonlinearities appearing in (6) disappear. For a �= 0 we need perturbative
methods. Integrating over the scalar fields in (8) we have1

Z =
∫

Df νDAν exp

(
ı

∫
d3x L(A, f )− Tr ln

[− � − m2
φ − ie(∂νf

ν + 2f ν∂ν) + ae2f αfα

])

=
∫

Df νDAν exp

([
ı

∫
d3x L(A, f ) +

1

2

∫
d3k f α(−k)Tαβf β(k) + O(e3)

])
(12)

where

L(A, f ) = µ2

2
f µfµ − m

2
εαβγ f α∂βf γ +

m

2
εαβγ (f α − Aα)∂β(f γ − Aγ ). (13)

The second term in the exponential is written in momentum space in terms of the Fourier
transforms fν(k). At quadratic order in coupling we have only two Feynman integrals. A
careful derivation leads to

Tαβ = 2ae2gαβI (1) + e2I
(2)
αβ . (14)

Using dimensional regularization we have obtained for the Feynman integrals:

I (1) =
∫

d3p

(2π)3

1

p2 − m2
φ

= i
mφ

4π
(15)

I
(2)
αβ =

∫
d3p

(2π)3

(2p + k)α(2p + k)β(
p2 − m2

φ

) [
(p − k)2 − m2

φ

] = imφ

8π

[
4gαβ − θαβ

(
2 +

z − 1√
z

ln
1 +

√
z

1 − √
z

)]
(16)

with z = k2/4m2
φ and θαβ = gαβ − kαkβ/k2. Our results for I (1), I (2) are in agreement with

[15]. The expressions for the integrals were given in the region 0 � z � 1. For z < 0 we can
analytically continue the expressions. Above the pair creation threshold (z > 1) the integral
I

(2)
αβ develops a real part which will be neglected here. This is a good approximation for large

mφ . Note that for a = −1 (minimal coupling) Tαβ becomes the vacuum polarization tensor
�αβ of scalar QED in (2+1) dimensions which is transverse kα�αβ = 0 = �αβkβ . Back in
(12) we can write down the effective master action at quadratic order:

LMaster = m2 + c2

2
f αfα − m

2
εαβγ f α∂βf γ − c1

4
Fαβ(f )B(�)F αβ(f ) (17)

+
m

2
εαβγ (A − f )α∂β(A − f )γ + O(e3), (18)

where we have defined

c1 = e2

16πmφ

(19)

c2 = (a + 1)

2π
e2mφ (20)

B(�) = 1

z

(
1 +

z − 1

2
√

z
ln

1 +
√

z

1 − √
z

)
. (21)

1 Throughout this work a small coupling expansion is understood as an expansion in the dimensionless constant
e2/mφ .
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Since the quadratic terms in the self-dual field in (18) are scalar field independent, the
integration over fν does not generate unwanted extra terms as before and we derive, after
expanding in the coupling, the non-local MCS theory:

L(e2)
NL−MCS = −m

2
Aµεµνγ ∂γ Aν +

1

4
Fµν(A)[−1 + c2 + c1 � B(�)]Fµν(A). (22)

On the other hand, if we believe that (6) is the correct dual gauge theory obtained from the
integration over fν in (8), neglecting the extra term (11), then it should be possible to derive
(22) directly from (6) by integrating over the scalar fields to the quadratic order in the coupling.
If we restrict LM+MCS to the same order e2 and introduce an auxiliary vector field Bν to lower
the nonlinearity of the Thirring term, the partition function associated with (6) will be given
by

ZM+MCS =
∫

DφDφ∗DBνDAν exp

(
ı

∫
d3x L(e2)

M+MCS

)
, (23)

where

L(e2)
M+MCS = −m

2
Aµεµνγ ∂γ Aν + Fµν(A)Fµν(A)

(
−1

4
+

ae2

2m2
φ∗φ

)

+
BνBν

2
− e

m
J (0)

ν (Bν + εναβ∂αAβ) + Lmatter. (24)

We have expanded the coefficient of the Maxwell term up to the second order in coupling.
Integrating over the scalar fields, using (15) and (16) and Gaussian integrating over Bν we
obtain

ZM+MCS = D

∫
DAν exp

(
ı

∫
d3x Leff

)
(25)

with D being a constant. The effective Lagrangian turns out to match (22) after expansion up
to the quadratic order in the coupling:

L(e2)
eff = −m

2
Aµεµνγ ∂γ Aν + Fµν(A)

[
ae2mφ

8πm2
− 1/4

1 + e2mφ

2πm2 + c1 � B(�)

m2

]
Fµν(A) + O(e3)

= L(e2)
NL−MCS + O(e3). (26)

Therefore, using (8), (9) and (23), (25), (26) we have shown that the partition functions
corresponding to the classically equivalent theories LM+MCS and LM+SD are equivalent to the
order e2 up to an overall constant. In other words, the extra term (11) can be completely
disregarded to the above order, although a �= 0.

Now we have an interesting remark about the case of Nf flavours of scalar fields.
This case requires e → e/

√
Nf in our starting Lagrangian (1) which would imply

µ2 → m2 + (2ae2/Nf )
∑Nf

j=1 φjφ
∗
j . It is easy to convince oneself that the integration over

the Nf scalar fields could be done exactly in the limit Nf → ∞ resulting precisely in our
quadratic master action (18). After integration over the self-dual field we would obtain

LNL−MCS(Nf → ∞) = −m

2
Aµεµνγ ∂γ Aν − m2

4
Fµν(A)

1

[m2 + c2 + c1 � B(�)]
Fµν(A).

(27)

On the other hand, we should be able to derive the Lagrangian above starting from the dual
gauge theory LM+MCS + Lextra, which now contains 1/µ2 = 1

/[
m2 + (2ae2/Nf )

∑Nf

j=1 φjφ
∗
j

]
in front of the Maxwell term, by taking Nf → ∞. It turns out that this is not trivial since

the term
∑Nf

j=1 φjφ
∗
j /Nf which appears in 1/µ2 is a priori not small at Nf → ∞. Thus, the

duality allows us to carry out a sum in (6) of infinite terms of the same order in 1/Nf which
allows an exact solution of LM+MCS + Lextra in the limit Nf → ∞.
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2.3. Correlation functions

Returning to the case Nf = 1, by introducing sources and comparing correlation functions
we will show that the dual map fν ↔ Ãν holds at quantum level. As in [16] we add sources
for the dual field Ãν , given in (7). Defining DM ≡ DφDφ∗Df νDAν , we deduce

Z(J ) =
∫

DM exp

(
ı

∫
d3x[Lmaster + J νÃν]

)
=

∫
DM

× exp

(
ı

∫
d3x

[
Lmaster + fνJ

ν +
JνJ

ν

2µ2

])
(28)

= C

∫
DφDφ∗Df ν exp

(
ı

∫
d3x

[
LM+SD + fνJ

ν +
JνJ

ν

2µ2

])
. (29)

In (28) we have simply made a translation fν → fν + Jν/µ
2 while to get (29) we did

Aν → Aν + fν and integrated over the gauge field producing the overall constant C. Deriving
lnZ(J ) with respect to the sources we can prove the following identity for connected
correlation functions:〈

Ãν1(x1) · · · Ãνn
(xn)

〉
Master = 〈

fν1(x1) · · · fνn
(xn)

〉
SD+M + CT, (30)

where CT stands for contact terms. For instance, for the two point functions we have〈
Ãν1(x1)Ãν2(x2)

〉
Master = 〈

fν1(x1)fν2(x2)
〉
SD+M + gν1ν2δ(x1 − x2)

〈
1

µ2

〉
SD+M

. (31)

From (30) we see that whatever is the gauge theory obtained from the master action by
integration over fν , the correlation functions of Ãν in such theory will coincide with the
correlation functions of fν in LM+SD for arbitrary values of a up to contact terms. Due to
the difficulties related with the integration over fν , see (10), we have to stick once again to
perturbative calculations in order to relate the left-hand side of (30) with the theory (6). By
repeating the steps which have led us from (8) to (22) now in the presence of sources we have∫

Df νDφDφ∗ exp

(
ı

∫
d3x[Lmaster + J νÃν]

)
= exp

(
ı

∫
d3x L(e2)(J )

)
, (32)

where

L(e2)(J ) = L(e2)
NL−MCS + Jµ

[
e2mφ

4πm4
gµν +

c1 � B(�)

2m4
θµν

]
J ν

+ Jµ

[
1

m
− e2mφ(a + 1)

2πm3
+

c1 � B(�)

m3

]
εµαν∂

αAν + O(e3). (33)

In the expression (33) we have used θαβ = gαβ − ∂α∂β/�. On the other hand, integrating over
the matter fields disregarding terms of order O(e3), as in the derivation of (26) from (23), we
can deduce

=
∫

DφDφ∗ exp

(
ı

∫
d3x

[
L(e2)

M+MCS + J νÃν + O(e3)
]) = exp

(
ı

∫
d3x L(e2)(J )

)
. (34)

From (32) and (34) we derive〈
Ãν1(x1) · · · Ãνn

(xn)
〉
M+MCS = 〈

Ãν1(x1) · · · Ãνn
(xn)

〉
Master + O(e3). (35)

From (30) and (35) we conclude〈
Ãν1(x1) · · · Ãνn

(xn)
〉
M+MCS = 〈

fν1(x1) · · · fνn
(xn)

〉
SD+M + CT + O(e3). (36)

Therefore, the mapping fν ↔ Ãν also holds at quantum level, at least if we neglect terms of
order e3.
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For a = 0 we have shown in [9] that matter field correlators in LM+MCS and in LM+SD

are equal since no integration over matter fields is necessary to go from LM+MCS to LM+SD

via master action. For a �= 0, had we added scalar field sources in (28), that is, instead of
J νÃν we had J νÃν + ψφ + ψ∗φ∗, since no scalar field integration is carried out to obtain
(29), we would be able to prove that scalar correlators in LMaster and in LM+SD would be
equal which is the analogous of (30) for pure scalar field correlators. However, since
the matter fields are integrated over perturbatively in (32) and (34), the reader can check
that such integral in the presence of the sources ψ,ψ∗ would generate terms of the type
ψ

(
� + m2

φ

)−1
ae2f 2ψ∗ thus leading to divergences in the integral over the self-dual field

which has a delta function propagator, as commented in [9]. Such divergences would invalidate
our perturbative integration over the scalar fields. Therefore, the connection between the scalar
field correlators in the LMaster and those correlators in LM+MCS is more complicated and we
are not able to prove equivalence with the corresponding correlators in LM+SD, not even at
quadratic order in the coupling.

3. Spectrum

After a translation Aν → Aν + fν in (18) we can integrate over the gauge field yielding an
effective non-local self-dual model:

LNL−SD = m2 + c2

2
f αfα − m

2
εαβγ f α∂βf γ − c1

4
Fαβ(f )B(�)F αβ(f ). (37)

The effect of the matter fields determinant, up to the considered order, was to produce another
mass term for the self-dual field plus a non-local Maxwell term.

Now in order to verify whether our quadratic truncation furnishes sensible theories we
check the spectrum of both quadratic theories (37) and (22). It is a general result, see [17],
that due to the fact that (37) and (22) are connected via a Chern–Simons mixing term, see
(18), the propagators coming from both theories will have the same pole structure except for a
non-physical, gauge-dependent, massless pole k2 = 0 associated with the Chern–Simons term
which will appear in the propagator of the gauge field as one can explicitly check from (22).
Consequently, we only need to check the spectrum of (37). In the large mass limit mφ → ∞
(z → 0) using a derivative expansion B(�) = 2/3 + O

(− �
/
m2

φ

)
we recover a local theory

of the Maxwell–Chern–Simons–Proca type:

L(e2)
NL−SD =

[
m2 +

(a + 1)

2π
e2mφ

]
f αfα

2
− m

2
εαβγ f α∂βf γ

− e2

96πmφ

Fαβ(f )F αβ(f ) + O
(

1

m3
φ

)
. (38)

It is possible to show [17, 18] that the Maxwell–Chern–Simons–Proca theory is free of ghosts
whenever the coefficient of the Maxwell term is non-positive and the coefficient of the Proca
term is non-negative. This requires a � a∗ ≡ −1− (2πm2)/(e2mφ) which includes the linear
coupling a = 0 and the minimal coupling a = −1. If the condition a � a∗ is satisfied we have
a perfectly well-defined theory with two massive physical poles. We note that for a �= −1
the limit mφ → ∞ only makes sense if we assume the scaling e2 ∼ α/mφ where α is some

constant with mass square dimension, after which L(e2)
NL−SD becomes a self-dual model with

a modified mass due to the matter fields determinant. At leading order the Maxwell term is
neglected and we end up with just one massive pole if a �= a∗. In the case a = a∗ we have,
quite surprisingly, a gauge theory. The gauge non-invariance of the non-minimal coupling
with the scalar fields cancels the mass term of the self-dual model. In this special case the
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duality relates two gauge theories. On one hand we have a local MCS theory, see (38) without
the Proca term, on the other hand (22) becomes for c2 = −m2 and B(�) = 2/3 a non-local
MCS Lagrangian: (m/2)Aµεµνγ ∂γ Aν − (6πm2mφ/e2)Fαβ(1/�)F αβ . In particular, we have
the coupling e2/mφ on one side and mφ/e2 on the dual side which is typical for dual theories.
For the minimal coupling a = −1, in the limit mφ → ∞, (37) becomes at leading order a
pure self-dual model with the same original mass as before the coupling to the scalar field. In
summary, both effective theories (37) and (22) are perfectly well-defined dual field theories
with the same particle content as far as a � a∗.

4. Conclusion

The most useful applications of duality concern interacting theories. It is specially interesting
to connect complicated nonlinear theories with simpler dual models. Here we have shown
how a perturbative integration over part of the degrees of freedom can help us to find such
connections at quantum level. Explicitly, we have demonstrated, by integrating the scalar
fields to the order e2, that the classical map fµ ↔ Ãµ holds also at quantum level at least
perturbatively up to terms of order O(e3). The quadratic effective free theories obtained
lead to sensible quantum field theories for a large range of the couplings which includes the
linear (a = 0) and the minimal (a = −1) couplings. In particular, although there is some
simplification at classical level for the minimal coupling, there are apparently no physical
requirements to force us to assume such coupling at quantum level to the order examined here.

We remark that one of the difficulties in relating nonlinear theories through a master action
is the presence of extra terms like (11) which have been consistently neglected here but can
possibly play a role at higher orders in the coupling constant which demands the inclusion
of higher corrections to the scalar fields determinant. A complete proof of quantum duality
between SD and MCS theories nonlinearly coupled to U(1) scalar fields requires perhaps a
non-perturbative analysis of the matter correlators in both theories. It is tempting to blame the
bad infrared behaviour of the self-dual field for the infinities related with the extra term (11).
The non-Abelian and the non-commutative cases of SD/MCS duality suffer from problems
alike, i.e., the quadratic terms in the self-dual field do not have constant coefficients which
makes the integral over those fields complicated.
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